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Abstract. We consider a semi-infinite two-dimensional Ising model with nearest-neighbour 
couplings that deviate from the bulk critical coupling by A/-', where I is the distance from 
the surface. The surface critical exponents of this system are non-universal. Under a 
conformal mapping onto a strip of width L, the A!-' inhomogeneity transforms into 
A[(L/n-)sin(n//L)]- ' .  For the square lattice the spectrum of the transfer matrix in the 
strip geometry is calculated exactly in the extreme anisotropic limit. The analytical results 
and numerical results for the triangular lattice are compared with predictions of conformal 
invariance. 

The surface critical behaviour of semi-infinite magnetic systems with smoothly 
inhomogeneous coupling constants that deviate from the bulk critical coupling by 
for large l, 1 being the distance from the boundary, is studied in [l-41. According to 
scaling arguments [4] the inhomogeneity is irrelevant, marginal, and relevant for s > y,, 
s = y , ,  and s < y , ,  respectively, where y, is the bulk thermal scaling index. In the 
marginal case one expects non-universal surface critical behaviour, which is indeed 
found in the two-dimensional Ising model [ 1-31. For A < A, (A ,  being a positive 
constant) the correlation function of surface spins g l i (  r )  behaves asymptotically as 
r-"ll, where T ~ ~ ( A )  = 1 - A/A,.  For A > A, there is a spontaneous surface magnetisation 
m,, corresponding to T~~ =0,  and g l i ( r )  - my decays as r-"li, where T ~ ( A )  = -1+A/A,.  

In two-dimensional critical systems with homogeneous couplings conformal invari- 
ance determines all the bulk and surface critical exponents and correlation functions 
[ 5 ] .  Conformal invariance also holds in systems where the translational invariance is 
broken by a marginally relevant defect line [6,7]. In this letter we check the validity 
of conformal invariance in the semi-infinite two-dimensional Ising model with a 
marginal AI-' inhomogeneity. Following a familiar recipe [8], we compare the exact 
correlation function of the system defined on a strip with the correlation function that 
follows from a conformal mapping of the half space onto the strip. 

In spatially inhomogeneous systems the temperature variable t (  r )  that specifies the 
local deviation from criticality transforms [4] as t (  r') = byit( r )  under an ordinary scaling 
transformation r'= b-'r and as 

t (  w )  = I w'(  z)l - y l t (  z )  ( 1 )  
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under a conformal mapping w = w( z). From the mapping w = ( L / T )  In z, with z = x + iy 
and w = U + iu, one finds that t ( z )  = Ay-" in the half-space y > 0 corresponds to 

t (  w )  = A( a/ L)yi exp[ (y, - s) TU/ L][sin( n u /  L)]-,' 

t (  w )  = A[ ( L /  T )  sin( n u /  L)]-'. 

(2) 

in the strip 0 < u < L. In the marginally-inhomogeneous Ising model, y, = s = 1 and 

(3)  

Conformal covariance of the correlation function implies [ 81 the amplitude-exponent 
relationt 

Here 7jIl(A) is the non-universal exponent defined above, and &(A) is the correlation 
length in the strip with inhomogeneous interactions of the form (3 ) .  

The surface scaling dimensions x, of the operators can be determined from the 
spectrum of the transfer matrix T along the strip. We define the critical Hamiltonian 
H by T = exp( - a H ) ,  where a is the lattice spacing. Generally for free-spin boundary 
conditions H has a spectrum in the large-l limit of the form [5] 

Here Eo and E, are the energies of the ground and ith excited states of H, respectively, 
and m is a non-negative integer. For classical two-dimensional systems with isotropic 
interactions, 5 = 1, while for one-dimensional quantum models l is a normalising 
factor, the so-called sound velocity. In general xi = x + m, where x is the anomalous 
dimension of a primary operator. The surface scaling index x; of the magnetisation 
and the exponent 7jI1 introduced above satisfy 7j11 = 2xf. 

We have checked equation (4) numerically for the Ising model with a marginal 
inhomogeneity on the triangular lattice and calculated the complete spectrum of the 
transfer matrix for the square lattice analytically in the extreme anisotropic limit. 

Our numerical studies consider [9] a semi-infinite triangular lattice with nearest- 
neighbour coupling constants K,(  I )  parallel to the surface and diagonal bonds K2(  I )  
that vary as 

Kj(I) = K j ( a ) + A , / l  ( 6 a )  

A, =:A sinh(2Kl(w)) A2 = :A cosh(2K2(co)). ( 6 b )  

The bulk couplings K , ( a )  = K 2 ( a )  = (In 3)/4 are isotropic and critical. In the strip 
geometry A j / l  is replaced by A , [ ( L / T )  s in(~I /L)] - ' ,  as in equation (3). 

Using the numerical procedure outlined in [9] we have calculated the correlation 
length in strips of triangular lattice with widths of up to N = 100 triangles, i.e., 
L = & N / 2  lattice constants. The results are shown in figure 1. According to the 
amplitude-exponent relation (4), 2L/[ &(A)] should extrapolate to vl,(A) = 1 - A/A,  

t Transformation ( 1 )  also leads to an amplitude-exponent relation for the two-dimensional Ising model with 
an interior defect line [6,7]. Substituting r ( z )  = B S ( y )  and w = (L /27r )  In z into equation ( l ) ,  one obtains 
f ( w ) =  B[S(u)+6(u-L/2)]  for y, = 1 .  Conformal covariance of the correlation function implies 
limL-m [&(B)/L] = [ m l l ( B ) ] - ' .  The non-universal exponent q ( B )  describes the decay of spin correlations 
parallel to the defect line, and & ( E )  is the correlation length in a strip with two defect lines and cylindrical 
boundary conditions. This amplitude-exponent relation was first tested numerically in [6]. 
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Figure 1. Numerical test of the amplitude-exponent relation (4) for strips of triangular 
lattice with width L = f i N / 2  lattice constants and N = 10, 15, 20, 25, 33, 50, 100. The 
triangles show the limiting values ?, , (A)  = 1 - A / A ,  for A < A, and ' ) , , (A )  = O  for A > A, 
predicted by (4).  

for A / A , <  1 and to zero for A/A,>  1. These values are indicated by triangles on the 
figure. The agreement is very convincing for A / A ,  6 0.5. For A / A c  3 0.5 the conver- 
gence with increasing L is slower, as explained quantitatively below, and the numerical 
results are less conclusive. 

We now check equation (4) analytically and determine the scaling dimension of 
all the operators. We begin with a semi-infinite square lattice. As in [ 11 the couplings 
parallel to the surface are chosen to be position independent, i.e. K,(Z) = Kl(m). The 
perpendicular bonds vary as 

In the strip geometry the parallel couplings are again assumed to be position indepen- 
dent, while the perpendicular bonds have the spatial dependence (3). The critical 
Hamiltonian is determined in the extreme anisotropic or time-continuum limit [ 101. 
This leads to a quantum Ising model with Hamiltonian 

K2(1)  = K2(m)+aA sinh(2K2(m))Z-' Z+m. (7) 

L-1 L 

H=- A ( / )  a;a;+,-h a; 
/ = I  I = l  

A ( / )  = 1 -a[(L/.rr) sin(.rrl/L)]-'. 
The af ,  a; are Pauli operators at site 1. The bulk critical point corresponds to h = 1, 
and in the extreme anisotropic limit A = -2a. 

We calculate the spectrum of the critical Hamiltonian (8) to order 1/L following 
[ l l ,  121. The Hamiltonian is written as a quadratic expression in terms of fermion 
creation and annihilation operators and converted to the diagonal form 

H = h,(a:a,  -f) (9) 
k 
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by a canonical transformation. Here ak, a: denote fermion operators and Ak the 
eigenvalues of an L x  L matrix. As in [12] there is a systematic expansion in powers 
of l / L  for the lowest eigenvalues Ak, which are O(l /L) .  To first order in 1 /L  the 
difference equation satisfied by the eigenvectors may be replaced by the differential 
equation 

AL a 2 + a c o s x  
277 4 Y X )  + [ (-) sin' x 

- 

with boundary conditions 

Here 0 s x = 7711 L s 77, and in equation (10) we have omitted the index k. One sees 
in (10) that A is O( 1/ L) as originally assumed. 

With the substitutions 

+(x)  = COS"(X/~)  sin"+'(x/2)y( t )  t = sin2(x/2) (12) 

r(1- t)y"( t )  +[e  - ( a  + b +  l)t]y'(t) -aby( t )  = 0 (130) 

a = a + 1 / 2 + A L / 2 ~  b = a + 112 - AL/2r  c = a +3/2. (13b) 

y ( t ) = C , F ( a ,  b; c; f )+C2t1- 'F(a-c+l ,  b - c + l ; 2 - c ;  f )  (14) 

equation (10) can be rewritten in the hypergeometric form [13] 

The general solution to equation (13) is given by 

where the F(a ,  b; c; t )  are standard hypergeometric functions [13]. The boundary 
condition (1 1) at x = 0 requires C2 = 0 for a > - i and C, = 0 for a < - f . Both boundary 
conditions (11) are only satisfied for the discrete set of eigenvalues? 

277 
L 

Ak =- (a +;-k k )  k=0 ,1 ,2 ,  . . .  a >  -f 

(15b) 
277 
L 

i l k = -  ( - O ' + i +  k-  1) k = l , 2 , 3  ,... a <  -;, ho = O( L * ~ )  

corresponding to hypergeometric functions that are finite polynomials. 
The a dependence of the first few eigenvalues is shown in figure 2. For a < - 4  

the lowest eigenvalue Ao- L2" vanishes faster than L-' in the large-L limit. Thus the 
ground state of the system is asymptotically degenerate, i.e., there is a spontaneous 
surface magnetisation in the limit L + CO, in accordance with previous results [ 1-31. 

The spontaneous surface magnetisation for A(m) 2 1, a < -f disappears discon- 
tinuously [ 1-41 as A (CO) is lowered past 1. In a first-order transition the correlation 
length ordinarily remains finite, and in the large-L limit the gap in the spectrum of 
the transfer matrix varies [ 14,151 as exp( - rL)  at and below the transition temperature. 
However, in the first-order transition in our system the correlation length diverges, 
and the gap vanishes according to a power law in L instead of exponentially. 

t Equations (10) and ( 1  11, which only determine A to order L-', yield A, = 0 for a < -f. The result Ao- L2" 
can be derived from the difference equation for eigenvectors, using the continuum eigenfunction +(x)  = 
tan-"(91/2L) as a first approximation. 
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Figure 2. Dependence of the lowest few eigenvalues A given by equation ( 1 5 )  on a. 

Now we determine the anomalous dimensions of the scaling operators from 
equations ( 5 ) ,  (9), and (15). The value 5 = 2 for the second velocity follows from 
earlier work [16] on the homogeneous model (a = 0). The excited states of H belong 
to orthogonal sectors containing odd (magnetisation sector) and even (energy sector) 
numbers of fermions, respectively. 

For a > -f, corresponding to zero surface magnetisation, the anomalous 
dimensions in the magnetisation sector are given by 

(16) 
The least dimension xf = f + a in this sector coincides with the value qI1/2 deduced 
from the pair correlation function in the semi-infinite geometry [l-31. Thus the 
amplitude-exponent relation (4) is satisfied. 

xf = n + f + ( 2 m  + 1)a n, m =0, 1 , .  . . . 

In the energy sector one finds the anomalous dimensions 

x l =  n +2ma n = 2 , 3  ,... m = l , 2  ,.... (17) 
The least scaling dimension xf = 2 + 2a, which describes the decay of surface energy 
correlations, is consistent with numerical results for the semi-infinite geometry [ 171. 
In both sectors there are conformal towers of the form ( 5 ) .  The number of primary 
operators is finite ( q )  if a is a rational number (a = p /  q where p, q are relative primes) 
and is infinite if a is irrational. 

For a < -4, corresponding to a non-vanishing surface magnetisation, the critical 
dimensions are given by formulae similar to (16) and (17), except that a is replaced 
by -a. Again the spectrum has the form ( 5 ) ,  but the scaling dimension x’= 76/2 = 
-5-a deduced from the result for qi in the semi-infinite geometry [l-31 is absent. 

According to equation ( l ) ,  t ( z )  = Ay-”t is invariant under Mobius mappings of the 
half space y > O  onto itself. Thus conformal invariance implies the functional form 
[5,181 

Ax1 -xz; YI Y Y z )  = (YIYZ)-””F{Y,r2/[(XI -x*)z+(Yl -Y2)’1) (18) 
for the spin-spin correlation function, where q = a  for the Ising model. The exact 
results reviewed in the first paragraph of this letter are reproduced if F( U )  = Bu7ii’* 
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for A < A, and F(  U )  i= C2 + D u ‘ ~ ’ ~  for A > A, as U + 0. However, from other arguments 
it seems that the amplitudes C2 and D must vanish. If (18) applied with D non-zero, 
the scaling dimension x’ = 77i1/2 would be present in the spectrum of the transfer matrix, 
which is not the case. C must vanish since an L x CO Ising strip with finite couplings 
has zero spontaneous magnetisation except at T = 0. If C were non-zero, the half-space 
magnetisation m ( y )  = Cy-’” would transform into a non-zero spontaneous magnetisa- 
tion in the strip under the logarithmic mapping [19]. Presumably F(u) vanishes 
identically for A > A, ,  and the exact results of the first paragraph represent corrections 
to (18). As a check on this interpretation, it would be nice to have exact results for 
the magnetisation profile at T, in the inhomogeneous semi-infinite Ising model with 
A >  A,  to see whether m ( y )  does indeed decay faster than y - ’ I 8  perpendicular to the 
boundary. 

We have checked our analytical results for the spectrum in detail by diagonalising 
the Hamiltonian (8) numerically for chain lengths up to L = 200. For the triangular 
lattice we have also numerically confirmed the analogue 5;’ - L-*/*C, A > A,  (see 
figure 1) of the relation Ao- LZa, a < -$. 

The algebra that generates the spectrum of the transfer matrix will be constructed 
explicitly in a subsequent publication [20]. 

This work was supported by the Sonderforschungsbereich 341 Koln-Aachen-Julich. 
FI is grateful to J Zittartz and to R Dekeyser for hospitality in Cologne and Leuven, 
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